Title Position Estimation Using Phase Difference of Electrode Array
for Two-Dimensional (2D) Communication System
Credit 6
Candidate Miss Supaporn Chantanakorn
Advisor Saprangsit Mruetusatorn, Ph.D.
Program Bachelor of Science Program in Information Technology
Field of study Information Technology
Faculty Information Technology
A.D. 2010

Abstract

Company Name National Institute of Information and Communications
Technology (NICT)
Place Kyoto, Japan
Type of Business Research Center
Department New Generation Wireless Communications Research Center
Position Research Assistant
Supervisor Name Dr.Bing Zhang

Two-dimensional (2D) communication is a novel communication technology,
which uses a sheet of special structure that allows a physical surface to propagate
radio signals, and a coupler that is used to input / output radio signal. Furthermore, the
2D communication technology can be applied for energy transmission by using high-
power carrier waves, which can easily allocate a lot of sensors on the two dimensional
sheet, and gather data from each node with high throughput.

In this report, a position estimation method that uses the phase difference of
input electrodes upon receiving pilot signal from device is proposed. The proposed
method is described and evaluated by measuring the phase and power level of pilot
signal, in which reflection does not occur. The accurate position information of
devices can be applied to various location-specific multimedia applications in the 2D
communication system. These applications have a very high possibility that people
can explore interesting spots or items in more detail. It makes people have more
comfortable lives.

Keyword: two-dimensional communication / position estimation / phase difference /
pilot signal / carrier wave